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We consider the solution of a one-dimensional Kac equation without cutoff
built by Graham and Me� le� ard. Recalling that this solution is the density of a
Poisson driven nonlinear stochastic differential equation, we develop Bismut's
approach of the Malliavin calculus for Poisson functionals in order to prove
that this solution is strictly positive on ]0, �[_R.

KEY WORDS: Boltzmann equation without cutoff ; Poisson measure;
stochastic calculus of variations.

INTRODUCTION

We prove by a probabilistic approach the strict positivity of a solution of
a one dimensional Kac equation without cutoff, in the case where the cross
section does sufficiently explode. In the cutoff case, much more is known:
Pulverenti and Wennberg, (14) have proved, by using analytic methods, the
existence of a Maxwellian lowerbound. But their proof is based on the
separation of the gain and loss terms, which typically cannot be done in
the present case. Let us also mention that similar results about the
Laudau equation, obtained by analytic methods, can be found in Arsen'ev,
Buryak, (2) and Villani.(16) But no result seems to have been found by the
analysts in the case of the Boltzmann or Kac equation without cutoff.

The solution we study has been built by Graham and Me� le� ard in
ref. 11, who follow the ideas of Tanaka, (15) and use the Malliavin calculus.
This solution f (t, v) can be related with the solution Vt of a Poisson driven
nonlinear S.D.E.: for each t>0, f (t, } ) is the density of the law of Vt . We
will thus study f as the density of a Poisson functional.
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The strict positivity of the density for Wiener functionals has been
worked out by Aida, Kusuoka, Stroock, (1) and Ben Arous, Le� andre, (4) see
also Bally, Pardoux. (3) In ref. 10, the strict positivity of the density for
Poisson driven S.D.Es is studied in the case where the intensity measure of
the Poisson measure is the Lebesgue measure. The method is adapted from
a work of Bally and Pardoux, (3) which deals with a similar problem in the
case of white noise driven S.P.D.E.s, i.e., with Wiener functionals. This
method is based on Bismut's approach of the Malliavin calculus, which
consists in perturbing the processes, see, e.g., Bichteler, Jacod, (5) for the
case of classical diffusion processes with jumps. Nevertheless, we can not
directly apply the results of ref. 10. We can not either use exactly the same
Malliavin calculus as Bichteler and Jacod, because the intensity measure
of our Poisson measure will not be the Lebesgue measure. We generalize
a Malliavin calculus adapted to our model, inspired by Graham and
Me� le� ard.(11)

Let us say a word about the difference between the techniques in the
case of Wiener functionals and Poisson functionals. The main difference is
that the Malliavin calculus does product integrals with respect to the
Lebesgue measure in the first case, and with respect to the Poisson measure
in the second case. We thus have to deal with random perturbations and
with stopping times instead of deterministic perturbations and times. This
is why the assumptions are very stringent in ref. 10. Nevertheless, the
method gives a quite good result in the case of the Kac equation without
cutoff.

The present work is organized as follows. In Section 1, we recall the
Kac equation, we give the results of Desvillettes, Graham, and Me� le� ard
in refs. 8 and 11, who solved this equation, and we state our result. In
Section 2, we define rigorously our ``perturbations,'' and we state a criterion
of strict positivity. At last, we apply this criterion in the next sections.

1. THE KAC EQUATION WITHOUT CUTOFF,
THE MAIN RESULT

The Kac equation deals with the density of particles in a gaz. We
denote by f (t, v) the density of particles which have the velocity v # R at the
instant t>0. Then

�f
�t

(t, v)=|
v
*

# R
|

?

%=&?
[ f (t, v$) f (t, v$

*
)& f (t, v) f (t, v

*
)] ;(%) d% dv

*
(1.1)
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where

v$=v cos %&v
*

sin %; v$
*

=v sin %+v
*

cos % (1.2)

and ; is a non cutoffed cross section, i.e., an even and positive function on
[&?, ?]"[0] satisfying

|
?

0
%2;(%) d%<� (1.3)

The case with cutoff, namely when �?
0 ;(%) d%<�, has been much investi-

gated by the analysts, and they have obtained some existence, regularity
and strict positivity results.

In refs. 8 and 11, Desvillettes, Graham and Me� le� ard give an existence
and regularity result for such an equation, by using the probability theory.
See also Desvillettes, (6) for another statement (using the Fourier Theory),
and Desvillettes(7) or Fournier(9) for the 2-dimensional case. We are inter-
ested in this paper in the strict positivity of the solution of (1.1) built by
Graham and Me� le� ard in ref. 11. Let us recall their main results.

First, we will consider solutions in the following (weak) sense.

Definition 1.1. Let P0 be a probability on R that admits a
moment of order 2. A positive function f on R+_R is a solution of (1.1)
with initial data P0 if for every test function , # C 2

b(R),

|
v # R

f (t, v) ,(v) dv

=|
v # R

,(v) P0(dv)+|
t

0
|

v # R
|

v* # R

K,(v, v
*

) f (s, v) f (s, v*) dv dv* ds
(1.4)

where

K,(v, v
*

)=&bv,$(v)+|
?

&?
[,(v cos %&v

*
sin %)&,(v)

&[v(cos %&1)&v
*

sin %] ,$(v)] ;(%) d% (1.5)

and

b=|
?

&?
(1&cos %) ;(%) d% (1.6)

Notice that b and the collision kernel K, are well defined thanks to (1.3).
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In refs. 8 and 11, one assumes that

Assumption (H):

1. The initial data P0 admits a moment of order 2, and is not a Dirac
mass at 0.

2. ;=;0+;1 , where ;1 is even and positive on [&?, ?]"[0], and
there exists k0>0, %0 # ]0, ?�2[, and r # ]1, 3[ such that ;0(%)=
(k0 �|%| r) 1[&%0 , %0](%). We still assume �?

0 %2;(%) d%<�.

They also build the following random elements:

Notation 1.2. We denote by N0 and N1 two independant Poisson
measures on [0, T ]_[0, 1]_[&?, ?], with intensity measures:

&0(d%, d:, ds)=;0(%) d% d: ds; &1(d%, d:, ds)=;1(%) d% d: ds (1.7)

and by N� 0 and N� 1 the associated compensated measures. We will write
N=N0+N1 . We consider a real valued random variable V0 independant
of N0 and N1 , of which the law is P0 . We also assume that our probability
space is the canonical one associated with the independent random
elements V0 , N0 , and N1 :

(0, F, [Ft], P)=(0$, F$, [F$], P$)� (00, F0, [F0
t ], P0)

� (01, F1, [F1
t ], P1) (1.8)

We will consider [0, 1] as a probability space, denote by d: the Lebesgue
measure on [0, 1], and denote by E: and L: the expectation and law on
([0, 1], B([0, 1]), d:).

The following theorem is proved in ref. 8 (Theorem 3.6, p. 11).

Theorem 1.3. There exists a process [Vt(|)] on 0 and a process
[Wt(:)] on [0, 1] such that (b is defined by (1.6))

Vt(|)=V0(|)+|
t

0
|

1

0
|

?

&?
[(cos %&1) Vs&(|)&(sin %) Ws&(:)]

_N� (|, d% d: ds)&b |
t

0
Vs&(|) ds = (1.9)

L:(W )=L(V ); E( sup
[0, T ]

V 2
t )<�
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At last, Graham and Me� le� ard show in ref. 11 the following theorem
(see Theorem 1.6, Corollary 1.8, p. 4)

Theorem 1.4. Assume (H). Let (V, W ) be a solution of (1.9). Then
for all t>0, the law of Vt admits a density f (t, } ) with respect to the
Lebesgue measure on R. The obtained function f is a solution of the Kac
equation (1.1) in the sense of Definition 1.1. Assume furthermore that P0

admits some moments of all orders. Then for each t>0, the function f (t, } )
is of class C� on R.

Let us now give our assumption, which is more stringent than (H): we
need a stronger explosion of the cross section.

Assumption (SP):

1. The initial data P0 admits moments of all orders, and is not a
Dirac mass at 0.

2. ;=;0+;1 , where ;1 is even and positive on [&?, ?]"[0], and
there exists k0>0, %0 # ]0, ?�2[, and r # ]2, 3[ such that ;0(%)=
(k0 �|%| r) 1[&%0 , %0](%). We still assume �?

0 %2;(%) d%<�.

Our result is the following:

Theorem 1.5. Assume (SP), and consider the solution in the sense
of Definition 1.1 of Eq. (1.1) built in Theorem 1.4. Then f is strictly positive
on ]0, +�[_R.

In (SP), we do not really need the fact that P0 has moments of all
orders, but only the fact that the density f (t, v) of the law of Vt built in
Theorem 1.4 is continuous on R for each t>0.

Notice that our method does not work in the case where r belongs to
]1, 2[: we do really need a large explosion of the cross section at 0.

In the whole work, we will assume (SP), use Notation 1.2, and con-
sider a solution (V, W ) of (1.9).

2. A CRITERION OF STRICT POSITIVITY

This section contains two parts. We first introduce some general
notations and definitions about Bismut's approach of the Malliavin calculus
on our Poisson space. We follow here Bichteler, Jacod, (5) Graham and
Me� le� ard.(11) Then we adapt the criterion of strict positivity of Bally,
Pardoux, (3) (which deals with the Wiener functionals) to our probability
space.
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Definition 2.1. A predictable function v(|, s, %, :) on 0_[0, T ]
_[&%0 , %0]_[0, 1] is said to be a ``perturbation'' if for all fixed |, s, :,
v(|, s, ., :) is C1 on [&%0 , %0], and if there exists some even positive
(deterministic) functions ' and \ on [&%0 , %0] such that

|v(s, %, :)|�'(%); |v$(s, %, :)|�\(%) (2.1)

'(%)�
|%|
2

; '(&%0)='(%0)=0 (2.2)

if !(%)=\(%)+r2r+2 '(%)
|%|

then &!&��
1
2

and ! # L1(;0(%) d%)

(2.3)

Notice that thanks to (2.3), ' and \ are in L1 & L�(;0(%) d%).
Consider now a fixed perturbation v. For * # [&1, 1] we set

#*(s, %, :)=%+*v(s, %, :) (2.4)

Thanks to (2.1), (2.2), and (2.3), it is easy to check that for each *, s, :,
|, #*(s, } , :) is an increasing bijection from [&%0 , %0]"[0] into itself. Then
we denote by N *

0=#*(N0) the image measure of N0 by #*: for any Borel
subset A of [0, T ]_[&%0 , %0]_[0, 1],

N *(A)=|
T

0
|

1

0
|

?

&?
1A(s, #*(s, %, :), :) N0(d% d: ds) (2.5)

We also define the shift S * on 0 by

V0 b S *=V0 ; N0 b S*=N *
0 ; N1 b S*=N1 (2.6)

We will need the following predictable function:

Y*(s, %, :)=
;0(#*(s, %, :))

;0(%)
(1+*v$(s, %, :)) (2.7)

Then it is easy to check that for all * # [&1, 1],

#*(Y* } &0)=&0 (2.8)

and for all *, + # [&1, 1] (recall that ! is defined in (2.3)),

|Y*(s, %, :)&Y +(s, %, :)|�|*&+|_!(%) (2.9)
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In order to check (2.9), it suffices to use on one hand

} ;0(#*(s, %, :))&;0(# +(s, %, :))
;0(%) }

�
1

;0(%)
|(*&+) v(s, %, :)| sup

, # [#*(s, %, :), # +(s, %, :)]

|;$0(,)|

then the explicit expression of ;0 , ;$0 , the fact that if %>0 (resp. %<0),
then [#*(s, %, :), # +(s, %, :)]/]0, ?], (resp. [#*(s, %, :), # +(s, %, :)]/
[&?, 0[), and on the other hand

|;0(#*(s, %, :))|�|;0(%)|+|;0(#*(s, %, :))&;0(#0(s, %, :))|

then the same computation as above.
We also consider the following martingale

M*
t =|

t

0
|

1

0
|

?

&?
(Y *(s, %, :)&1) N� 0(d% d: ds) (2.10)

and its Dole� ans-Dade exponential (see Jacod and Shiryaev, (13))

G*
t =E(M *)t=eMt

*
`

0�s�t

(1+2M *
s ) e&2Ms

*
(2.11)

Since |Y*&1|�!�1�2, it is clear that G* is strictly positive on [0, T ] a.s.
We now set P*=G*

T .P. Using Eq. (2.8), and the Girsanov Theorem for
random measures (see Jacod and Shiryaev, (13) p. 157) one can show that
P* b (S*)&1=P, i.e., that the law of (V0 , N *

0 , N1) under P* is the same as
the one of (V0 , N0 , N1) under P.

We at last check the following lemma:

Lemma 2.2. Let v be a perturbation, and G* the associated expo-
nential martingale. Then a.s., the map * [ G*

T is continuous on [&1, 1].

Proof. Since |Y*&1|�! # L1(;0(%) d%), the compensated integrals
can be splitted, and one obtains

G*
T=exp {&|

T

0
|

1

0
|

?

&?
(Y*(s, %, :)&1) ;0(%) d% d: ds=

_exp {|
T

0
|

1

0
|

?

&?
ln Y*(s, %, :) N0(d% d: ds)= (2.12)
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Thanks to (2.9), it is clear that the first term in the product is continuous.
Furthermore, we deduce from (2.9) and the fact that !�1�2 that for
all *, +,

|ln Y*(s, %, :)&ln Y +(s, %, :)|�2 |Y*(s, %, :)&Y +(s, %, :)|

�2 |*&+|_!(%) (2.13)

Since ! is in L1(;0(%) d%) the random variable �T
0 �1

0 �?
&? !(%) N0(d% d: ds) is

a.s. finite, hence

|
T

0
|

1

0
|

?

&?
ln Y*(s, %, :) N0(d% d: ds) (2.14)

is a.s. Lipschitz on [&1, 1], and the second term in (2.12) is also con-
tinuous. The lemma is proved.

We now give the criterion of strict positivity we will use.

Theorem 2.3. Let X be a real valued random variable on 0, such
that P b X &1= p(x) dx, with p continuous on R, and let y0 # R. Assume
that there exists a sequence vn of perturbations such that, if X n(*)=X b S *

n ,
then for all n, the map

* [ X n(*) (2.15)

is a.s. twice differentiable on [&1, 1]. Assume that there exists c>0, $>0,
and k<�, such that for all r>0,

lim
n � �

P(4n(r))>0 (2.16)

where

4n(r)={ |X& y0 |<r, } �
�*

X n(0) }�c,

sup
|*|�$ _}

�
�*

X n(*) }+ } �2

�*2 X n(*) }&�k= (2.17)

Then p( y0)>0.

In order to prove this criterion, we will use the following uniform local
inverse theorem, that can be found in Aida, Kusuoka, and Stroock.(1)
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Lemma 2.4. Let c>0, $>0, and k<� be fixed. Consider the
following set:

G=[ g: R [ R�| g$(0)|�c, sup
|x|�$

[| g(x)|+| g$(x)|+| g"(x)|]�k] (2.18)

Then there exists :>0 and R>0 such that for every g # G, there exists
a neigbourhood Vg of 0 contained in ]&R, R[ such that g is a diffeo-
morphism from Vg to ] g(0)&:, g(0)+:[.

Since this lemma deals with the behaviours near 0, it can obviously be
adapted to functions from [&1, 1] to R.

Proof of Theorem 2.3. Step 1. First notice that for all r�1, for
all n, and all | # 4n(r),

sup
|*|�$

|X n(|, *)|�|X n(|, 0)|+$k=|X(|)|+$k�| y0 |+1+$k=k$ (2.19)

Thus, using Lemma 2.4, there exists :>0 and R # ]0, 1] (depending only
on $, c, k, and k$), such that for all r�1, all n # N, and all | # 4n(r), there
exists Vn(|) a neighbourhood of 0 contained in ]&R, R[ such that the
map

* [ X n(|, *) (2.20)

is a diffeomorphism from Vn(|) to ]X n(|, 0)&:, X n(|, 0)+:[=
]X(|)&:, X(|)+:[.

Choosing : small enough, we can assume that R�c�2k. Thus, for all
| # 4n(r) and * # Vn(|), we have |(���*) X n(*)|�c�2.

We now fix r<:, and choose n large enough such that P(4n(r))>0.

Step 2. The perturbations have been built in order to obtain, for all
* and all f # C +

b (R),

E( f (X ))=E( f (X n(*)) Gn
T (*)) (2.21)

Thus

E( f (X ))= 1
2 |

1

&1
E( f (X n(*)) Gn

T (*)) d*

� 1
2E _|Vn

f (X n(*)) Gn
T (*) d*_14n(r)& (2.22)
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Using the first step, we substitute y=X n(*), and we obtain:

E( f(X ))�
1
2

E _|]X&:, X+:[
f ( y)

Gn
T([X n]&1 ( y))

|(���*) X n([X n]&1 ( y))|
dy_14n(r)&

�|
R

f ( y) E _1
2

.(|X& y| )\17
Gn

T ([X n]&1 ( y))
|(���*) X n([X n]&1 ( y))|+_14n(r)& dy

(2.23)

where . is a continuous function on R+ such that 1[0, r]�.�1[0, :] . We
set

%n( y)=E _1
2

.( |X& y| ) \1 7
Gn

T ([X n]&1 ( y))
|(���*) X n([X n]&1 ( y))|+_14n(r)& (2.24)

Step 3. On one hand, it is clear that %n( y0)>0 (recall the definition
of 4n(r), recall that Gn

T is strictly positive, and that P(4n(r))>0). On the
other hand, one can show by using the Lebesgue Theorem and Lemma 2.2
that %n is continuous. We can easily conclude, by using the continuity of p,
and the fact that for all f # C +

b (R),

|
R

f ( y) p( y) dy�|
R

f ( y) %n( y) dy (2.25)

We at last state a usefull remark.

Remark 2.5. If X is a real valued random variable on 0, admitting
a continuous density p with respect to the Lebesgue measure on R, and if
for all y # supp P b X &1, p( y)>0, then p is strictly positive on R.

Proof. Since the support of the law of X is a closed set, we see that
for y # �[supp P b X &1], p( y)>0. Assume that (supp P b X &1)c{<. Then
there exists [ yk]/(supp P b X &1)c such that yk � y # �[supp P b X &1].
Since p is continuous, we deduce that p( y)=0. Thus (supp P b X &1)c=<,
and the proof is finished.

In order to prove Theorem 1.5, we will of course apply the previous
criterion. In fact, we will only prove that f (T, } ) is strictly positive on R,
which suffices since T has been arbitrarily fixed. In the next section, we will
consider a fixed perturbation vn , and we will compute V n

t (*) and its
derivatives for any t # [0, T ]. Section 4 is devoted to the explicit choice

734 Fournier



of the sequence vn of perturbations. In Section 5, we will prove (for some
constant =>0) that

lim
n � �

P \} �
�*

V n
T (0) }�=+=1 (2.26)

At last, we will check in Section 6 that for some constant K,

lim
n � �

P \ sup
|*|�1 }

�
�*

V n
T (*) }+ } �2

�*2 V n
T (*) }�K +=1 (2.27)

Since for all y0 # supp P b V &1
T , for all r>0, P(VT # ] y0&r, y0+r[)>0,

we will easily conclude in Section 7.

3. DIFFERENTIABILITY OF THE PERTURBED PROCESS

In this section, we consider a fixed perturbation vn . We compute
V n

t (*)=Vt b S *
n , and we prove that for each t in [0, T ], this function is

twice differentiable on [&1, 1].

3.1. The Perturbed Process

Recalling that b is defined by (1.6), that |cos %&1|�%2, and that (1.3)
is satisfied, one can easily check that Eq. (1.9) can be written:

Vt=V0+|
t

0
|

1

0
|

?

&?
(cos %&1) Vs& N(d% d: ds)

&|
t

0
|

1

0
|

?

&?
(sin %) Ws&(:) N� (d% d: ds) (3.1)

Hence, the perturbed process satisfies

V n
t (*)=V0+|

t

0
|

1

0
|

?

&?
(cos %&1) V n

s&(*) N *, n
0 (d% d: ds)

+|
t

0
|

1

0
|

?

&?
(cos %&1) V n

s&(*) N1(d% d: ds)

&|
t

0
|

1

0
|

?

&?
(sin %) Ws&(:)[N *, n

0 (d% d: ds)&;0(%) d% d: ds]

&|
t

0
|

1

0
|

?

&?
(sin %) Ws&(:) N� 1(d% d: ds) (3.2)
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But

&|
t

0
|

1

0
|

?

&?
(sin %) Ws&(:)[N *, n

0 (d% d: ds)&;0(%) d% d: ds]

= &|
t

0
|

1

0
|

?

&?
sin #*

n(s, %, :) Ws&(:) N� 0(d% d: ds)

&|
t

0
|

1

0
|

?

&?
(sin #*

n(s, %, :)&sin %) Ws&(:) ;0(%) d% d: ds

= &|
t

0
|

1

0
|

?

&?
(sin %) Ws&(:) N� 0(d% d: ds)

&|
t

0
|

1

0
|

?

&?
(sin #*

n(s, %, :)&sin %) Ws&(:) N0(d% d: ds) (3.3)

We finaly obtain:

V n
t (*)=V0+|

t

0
|

1

0
|

?

&?
(cos #*

n(s, %, :)&1) V n
s&(*) N0(d% d: ds)

+|
t

0
|

1

0
|

?

&?
(cos %&1) V n

s&(*) N1(d% d: ds)

&|
t

0
|

1

0
|

?

&?
(sin %) Ws&(:) N� (d% d: ds)

&|
t

0
|

1

0
|

?

&?
(sin #*

n(s, %, :)&sin %) Ws&(:) N0(d% d: ds) (3.4)

3.2. A Lipschitz Property

We study here the continuity of the map * [ V n
t (*), which will be

useful to study its differentiability. We set U n
t (*, +)=V n

t (*)&V n
t (+). This

process satisfies:

U n
t (*, +)=|

t

0
|

1

0
|

?

&?
(cos #*

n(s, %, :)&1) U n
s&(*, +) N0(d% d: ds)

+|
t

0
|

1

0
|

?

&?
(cos %&1) U n

s&(*, +) N1(d% d: ds)
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+|
t

0
|

1

0
|

?

&?
(cos #*

n(s, %, :)&cos # +
n (s, %, :)) V n

s&(+) N0(d% d: ds)

&|
t

0
|

1

0
|

?

&?
(sin #*

n(s, %, :)&sin # +
n (s, %, :)) Ws&(:) N0(d% d: ds)

(3.5)

This equation is a linear S.D.E. If we set

K n
t (*)=|

t

0
|

1

0
|

?

&?
(cos #*

n(s, %, :)&1) N0(d% d: ds)

+|
t

0
|

1

0
|

?

&?
(cos %&1) N1(d% d: ds) (3.6)

then we can write (see Jacod(12)):

U n
t (*, +)=E(Kn(*))t |

t

0
|

1

0
|

?

&?
E(Kn(*))&1

s&_
1

cos #*
n(s, %, :)

_[V n
s&(+)[cos #*

n(s, %, :)&cos # +
n (s, %, :)]

&Ws&(:)[sin #*
n(s, %, :)&sin # +

n (s, %, :)]] N0(d% d: ds) (3.7)

where the Dole� ans-Dade exponential is given by (see Jacod and
Shiryaev(13)):

E(Kn(*))t=eK t
n(*) `

0�u�t

(1+2K n
u(*)) e&2K n

u(*)

= `
0�u�t

(1+2K n
u(*)) (3.8)

But since any cosinus is in [&1, 1], it is clear that for all s�t,

|E(Kn(*))t E(Kn(*))&1
s& |= `

s�u�t

|1+2K n
u(*)|�1 (3.9)

Furthermore, since |#*
n |�%0<?�2, we see that

} 1
cos #*

n(s, %, :) }�
1

cos %0

<� (3.10)

737Strict Positivity of a Solution to a 1D Kac Equation Without Cutoff



At last, since |#*
n(s, %, :)|� 3

2 |%|,

|cos #*
n(s, %, :)&cos # +

n (s, %, :)|� 3
2 |%|_|*&+|_|vn(s, %, :)|

(3.11)
|sin #*

n(s, %, :)&sin # +
n (s, %, :)|�|*&+|_|vn(s, %, :)|

Hence, if

Y n
t (*)=

1
cos %0

|
t

0
|

1

0
|

?

&? _
3
2

|%|_|V n
s&(*)|+|Ws&(:)|&

_|vn(s, %, :)| N0(d% d: ds) (3.12)

then for all *, +, |U n
t (*, +)|�|*&+|_Y n

t (*). In particular, this yields that
for all *,

|V n
t (*)|�|Vt |+|U n

t (*, 0)|�|Vt |+Y n
t (0) (3.13)

Finaly, if

X n
t =

1
cos %0

|
t

0
|

1

0
|

?

&? _
3
2

|%|_|Vs& |+
3
2

|%|_Y n
s&(0)+|Ws&(:)|&

_|vn(s, %, :)| N0(d% d: ds) (3.14)

then for all *, +,

|U n
t (*, +)|�|*&+|_X n

t (3.15)

Since we know from Theorem 1.4 that

E( sup
[0, T ]

V 2
t )=E:( sup

[0, T ]

W 2
t )<� (3.16)

we deduce that (recall that |vn(s, %, :)|�'n # L1(;0(%) d%)):

E( sup
[0, T ]

|Y n
t (0)| )

�
1

cos %0
|

T

0
|

1

0
|

%0

&%0
_3

2
|%|'n(%) E( |Vs | )+|Ws(:)| 'n(%)& ;0(%) d% d: ds

�K |
%0

&%0

'n(%) ;0(%) d%_E( sup
[0, T ]

|Vt | )

+K |
%0

&%0

'n(%) ;0(%) d%_E:( sup
[0, T ]

|Wt | )<� (3.17)
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and, by using exactly the same computation,

E( sup
[0, T ]

|X n
t | )<� (3.18)

Thus X n
t is a.s. finished on [0, T ], and we can say that V n

t (*) satisfies a
Lipschitz property on [&1, 1] (for each t).

3.3. Differentiability

We set (for the moment, this is just a notation):

�
�*

V n
t (*)=&E(Kn(*))t |

t

0
|

1

0
|

?

&?
E(Kn(*))&1

s&_
1

cos #*
n(s, %, :)

_[V n
s&(*) sin #*

n(s, %, :)+Ws&(:) cos #*
n(s, %, :)]

_vn(s, %, :) N0(d% d: ds) (3.19)

We obtained this expression by differentiating formaly (3.4), and by using
the same argument as in (3.7).

We set Dn
t (*, +)=V n

t (+)&V n
t (*)&(+&*)(���*) V n

t (*). Let us com-
pute Dn

t (*, +):

Dn
t (*, +)=E(Kn(*))t |

t

0
|

1

0
|

?

&?
E(K n(*))&1

s&_
1

cos #*
n(s, %, :)

_[V n
s&(+)_[cos #+

n(s, %, :)&cos #*
n(s, %, :)

+(+&*) sin #*
n(s, %, :) vn(s, %, :)]

+U n
s&(*, +)(+&*) sin #*

n(s, %, :) vn(s, %, :)

&Ws&(:)_[sin #+
n(s, %, :)&sin #*

n(s, %, :)

&(+&*) cos #*
n(s, %, :) vn(s, %, :)]] N0(d% d: ds) (3.20)

Then a simple computation using Eqs. (3.9), (3.10), (3.15), and some-
thing like (3.11) shows that if

S n
t =

1
cos %0

|
t

0
|

1

0
|

?

&? _( |Vs& |+X n
s&) v2

n(s, %, :)+
3
2

|%|_|vn(s, %, :)|_X n
s&

+
3
2

|%|_|Ws&(:)|_v2
n(s, %, :)& N0(d% d: ds) (3.21)
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then for all *, +,

|Dn
t (*, +)|�(*&+)2_S n

t (3.22)

Using Eqs. (3.16), (3.18), and the fact that

v2
n(s, %, :)+|%|_|vn(s, %, :)|+|%|_v2

n(s, %, :)

�( 1
2+?+ 1

2 ?) 'n(%) # L1(;0(%) d%) (3.23)

we see that

E( sup
[0, T ]

|S n
t | )<� (3.24)

It is thus clear that V n
t (*) is differentiable on [&1, 1], and that its

derivative is (���*) V n
t (*).

3.4. Second Differentiability

One can check in the same way that (���*) V n
t (*) is differentiable, and

that its derivative is given by

�2

�*2 V n
t (*)=E(Kn(*))t |

t

0
|

1

0
|

?

&?
E(K n(*))&1

s&_
1

cos #*
n(s, %, :)

_{&2sin #*
n(s, %, :)

�
�*

V n
s&(*)_vn(s, %, :)

&V n
s&(*) cos #*

n(s, %, :) v2
n(s, %, :)

+Ws&(:) sin #*
n(s, %, :) v2

n(s, %, :)= N0(d% d: ds) (3.25)

3.5. Upper Bounds

We will soon use the following equations:

} �
�*

V n
t (*) }�Rn

t (3.26)
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where

Rn
t =

1
cos %0

|
t

0
|

1

0
|

?

&? _( |Vs& |+Y n
s&(0))_

3
2

|%|_|vn(s, %, :)|

+|Ws&(:)|_|vn(s, %, :)|& N0(d% d: ds) (3.27)

and

} �2

�*2 V n
t (*) }�1 n

t (3.28)

where

1 n
t =

1
cos %0

|
t

0
|

1

0
|

?

&? _3 |%|_Rn
s&_|vn(s, %, :)|

+( |Vs& |+Y n
s&(0))_v2

n(s, %, :)

+|Ws&(:)|_
3
2

|%|_v2
n(s, %, :)& N0(d% d: ds) (3.29)

4. CHOICE OF THE SEQUENCE OF PERTURBATIONS

Recall that

�
�*

V n
T (0)=&E(K )T |

T

0
|

1

0
|

?

&?
E(K )&1

s&_
1

cos %

_[Vs& sin %+Ws&(:) cos %] vn(s, %, :) N0(d% d: ds) (4.1)

where Kt=�t
0 �1

0 �?
&? (cos %&1) N(d% d: ds).

The problem is now to choose vn in such a way that for some =>0,
some K<�, the probability

P \ �
�*

V n
T(0) # [=, K]+

goes to 1. First, we have to get rid of the random terms E(K )T and E(K )&1
s&

in (4.1). To this end, we choose vn(s, %, :) equal to 0 for s�T&an , for
some sequence an decreasing to 0, and we use the a.s. continuity of E(K )
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at T. Then we notice that the dominant term in Vs& sin %+Ws&(:) cos %
is Ws&(:) cos %. We thus choose vn(s, %, :) equal to 0 for |%|�1�n (in order
that |vn | # L1(;0(%) d%)) and equal to k |%| for |%| # [2�n, %1] for some k>0
and %1�%0 . This way,

|
T

T&an
|

1

0
|

?

&?
|sin %|_|vn(s, %, :)| N0(d% d: ds)

will go to 0, but if an is well-chosen, since from (SP), % � L1(;0(%) d%),

|
T

T&an
|

1

0
|

?

&?
|vn(s, %, :)| N0(d% d: ds)

will go to infinity. Of course, this is not satisfying, but a stopping times will
allow us to ``cutoff '' this second integral.

Let us now be precise. First, let us recall a lemma that can be found
in Graham and Me� le� ard, (11) p. 15.

Lemma 4.1. Assume (H)-1. There exists 0<c<C<� and q>0
such that for all t # [0, T ],

P:(c�|Wt |�C )�q (4.2)

We will also need the following lemma

Lemma 4.2. One can build a sequence ,n of positive, even, C1 func-
tions on [&%0 , %0] such that ,n(&%0)=,n(%0)=0, such that ,n(%)�k |%|
for some k�1�2, such that if

!n(%)=|,$n(%)|+r2r+2 ,n(%)
|%|

(4.3)

then !n # L1(;0(%) d%) and !n�1�2, and such that there exists a sequence
an decreasing to 0 satisfying

an |
%0

&%0

,n(%) ;0(%) d% w� � (4.4)

an |
%0

&%0

( |%|,n(%)+,2
n(%)) ;0(%) d% w� 0 (4.5)
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Proof. We clearly can build a sequence ,n of even, positive and C1

functions such that, for some k # ]0, 1�2], ,n(%)�k |%|, such that

0 if |%|�1�n
,n(%)={ k |%| if |%| # [2�n, %0 �2(1+k)] (4.6)

0 if |%| # [%0 �(1+k), %0]

and such that

0 if |%|�1�n
4k if |%| # [1�n, 2�n]

|,$n(%)|�{ k if |%| # [2�n, %0�2(1+k)] (4.7)

2k if |%| # [%0 �2(1+k), %0 �(1+k)]

0 if |%| # [%0 �(1+k), %0]

Then !n is bounded, and vanishes near 0, it thus is in L1(;0(%) d%).
Furthermore, !n�4k+r2r+2k, which is smaller than 1�2 if we choose k
small enough. We now choose

an=\|
%0

&%0

,n(%) ;0(%) d%+
&1�2

(4.8)

We see that

|
%0

&%0

,n(%) ;0(%) d%�2 |
%0 �2(1+k)

2�n
k%_

k0

%r d%

=2kk0 |
%0 �2(1+k)

2�n
%1&r d% (4.9)

goes to infinity when n goes to infinity, since r is greater than 2. Hence an

goes to 0, and condition (4.4) is satisfied. On the other hand,

an |
%0

&%0

( |%| ,n(%)+,2
n(%)) ;0(%) d%�Kan |

%0

0
%2&r d%�Kan (4.10)

which goes to 0 since r<3. The lemma is proved.
We now define a stopping time that will allow the derivative at 0 not

to be too large. Consider the following process:

Zn
t =|

t

0
|

c�|Ws (:)|�C
|

?

&?
,n(%) N0(d% d: ds) (4.11)
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We fix l>0, and we set

Tn=inf[t>T&an �Zn
t &Zn

T&an
�l ] (4.12)

We now can define our sequence of perturbations (sg(x) denotes the signe
of x).

vn(s, %, :)=1[T&an , Tn 7T ](s) 1[c�|Ws&(:)|�C ] sg(E(K )s& ) sg(Ws&(:)) ,n(%)

(4.13)

For each n, vn is a perturbation (see Definition 2.1), since it is predictable,
and since it satisfies (2.1)�(2.3) thanks to Lemma 4.2.

We at last prove the essential following convergence:

lim
n � �

P(Tn<T )=1 (4.14)

Indeed,

P(Tn<T )�P(Zn
T&Zn

T&an
�l )�1&elE(e&(Zn

T&Z n
T&an

))

�1&el exp {&|
T

T&an
|

c�|Ws&(:)|�C
|

?

&?
(1&e&,n (%)) ;0(%) d% d: ds=

�1&el exp {&an_q_
1
2 |

?

&?
,n(%) ;0(%) d%= (4.15)

which goes to 1 thanks to Eq. (4.4). We have used Lemma 4.1 and the fact
that since ,n is smaller than 1, 1&e&,n�,n �2.

5. THE DERIVATIVE AT 0 IS LARGE ENOUGH

Thanks to our choice for the perturbation vn , we can write

} �
�*

V n
T (0) }

=|E(K )T |_ } |
Tn 7 T

T&an
|

c�|Ws&(:)|�C
|

%0

&%0

|E(K )&1
s& |

_[(tan %) Vs& sg(Ws&(:))+|Ws&(:)|] ,n(%) N0(d% d: ds) }
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�|E(K )T | |
Tn 7T

T&an
|

c�|Ws&(:)|�C
|

%0

&%0

|E(K )&1
s& |_c_,n(%) N0(d% d: ds)

&|E(K )T | |
T

T&an
|

1

0
|

%0

&%0

|E(K )&1
s& |_|tan %|_|Vs& |_,n(%) N0(d% d: ds)

�An&Bn (5.1)

First An is larger than

inf
[T&an , T ]

|E(K )T E(K )&1
s& |_c_(Zn

T 7 Tn
&Zn

T&an
) (5.2)

But E(K ) is a.s. continuous (and does not vanish) at T, thus the first term
in the product goes a.s. to 1. Furthermore, using Eqs. (4.12) and (4.14), we
see that

lim
n � �

P(Zn
T 7 Tn

&Zn
T&an

�l )=1 (5.3)

It is thus clear that

lim
n � �

P(An�cl�2)=1 (5.4)

On the other hand,

Bn� sup
[T&an , T ]

|E(K ) T E(K )&1
s& |_

1
cos %0

_|
T

T&an
|

1

0
|

%0

&%0

|Vs& |_|%| ,n(%) N0(d% d: ds) (5.5)

First, we have already seen (see Eq. (3.9)) that the first term in the product
is always smaller than 1. The last term goes to 0 in L1, thanks to (4.5) and
(3.16), since

E _|
T

T&an
|

1

0
|

%0

&%0

|Vs& |_|%| ,n(%) N0(d% d: ds)&
�E( sup

[0, T ]

|Vs& | )_an |
%0

&%0

|%| ,n(%) ;0(%) d% (5.6)
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Hence Bn goes to 0 in probability, and we finaly deduce that

lim
n � �

P \} �
�*

V n
T (0) }�cl�4+=1 (5.7)

The first part of our criterion is satisfied.

6. THE DERIVATIVES ARE NOT TOO LARGE

We still have to check that there exists K<� such that

P \ sup
|*|�1 }

�
�*

V n
T (*) }�K+ w� 1 (6.1)

and

P \ sup
|*|�1 }

�2

�*2 V n
T (*) }�K+ w� 1 (6.2)

We refer to Section 3. for the notations. In order to prove (6.1), we just
have to check that P(Rn

T�K ) goes to 1 (see (3.26) and (3.27)). First, we
will need the following preliminary estimation (L is a constant independant
of n):

E[ sup
[0, T ]

Y n
t (0)]�L (6.3)

But (M is a constant)

E[ sup
[0, T ]

Y n
t (0)]

�ME _|
Tn 7 T

T&an
|

c�|Ws&(:)|�C
|

?

&?
[|%| |Vs& |+|Ws&(:)|] ,n(%) N0(d% d: ds)&

�ME _|
T

T&an
|

1

0
|

%0

&%0

|%| |Vs& | ,n(%) N0(d% d: ds)&
+ME _|

Tn

T&an
|

c�|Ws&(:)|�C
|

?

&?
,n(%) N0(d% d: ds)& (6.4)
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Thanks to the definition (4.12) of Tn , the second term is smaller than
M(l+&,n&�). But ,n is always smaller than 1�2, and thus the second term
is smaller than M(l+1�2). On the other hand, the first term is smaller than

M |
T

T&an
|

1

0
|

%0

&%0

E( |Vs& | )_|%| ,n(%) ;0(%) d% d: ds

�ME( sup
[0, T ]

|Vt | )_an |
%0

&%0

|%| ,n(%) ;0(%) d% (6.5)

which goes to 0, thanks to (4.5) and (3.16). Inequality (6.3) is satisfied.
We now write Rn

t as (1�cos %0)( 3
2 Rn, 1

t +Rn, 2
t ), where

Rn, 1
t =|

t

0
|

1

0
|

?

&?
( |Vs& |+Y n

s&(0))_|%|_|vn(s, %, :)| N0(d% d: ds) (6.6)

Rn, 2
t =|

t

0
|

1

0
|

?

&?
|Ws&(:)|_|vn(s, %, :)| N0(d% d: ds) (6.7)

It is clear, thanks to the definitions of vn and Tn , and since ,n�1�2, that
Rn, 2

T �C(l+1�2). On the other hand, (3.16), (6.3) and (4.5) yield that Rn, 1
T

goes to 0 in L1. Hence, P(Rn
T�2C(l+1�2)) goes to 1, and (6.1) is satisfied.

Notice that we have proved in particular that there exists a constant
L independant of n such that

E( sup
[0, T ]

Rn
t )�L (6.8)

In order to prove (6.2), we have to check that P(1 n
T�K ) goes to 1

(recall (3.28) and (3.29)). Thanks to (4.5), (3.16), (6.3), and (6.8), we see
that

E(1 n
T) � 0 (6.9)

which gives immediately the result.
Notice that we do not need to choose l (see the definition of Tn ,

(4.12)): this might look strange, but it in fact is natural. First, if l is large,
then the derivative at 0 will be more easily large, but the derivative and
second derivative will be less easily bounded on [&1, 1]. As a second
reason, notice that we use a sequence of perturbations that would make
explode (���*) V n

T (0) if we did not use Tn .
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7. CONCLUSION

We have found some constants =>0 and K<� such that

lim
n � �

P \} �
�*

V n
T (0) }�=; sup

|*|�1 }
�

�*
V n

T (*) }�K ; sup
|*|�1 }

�2

�*2 V n
T (*) }�K+=1

(7.1)

Let now y0 be a point of the support of the law of VT . Then for any
r>0,

P \|VT& y0|�r; } �
�*

V n
T(0) }�=; sup

|*|�1 }
�
�*

V n
T (*) }�K ; sup

|*|�1 }
�2

�*2 V n
T(*)|�K+

ww�n � � P( |VT& y0|�r)>0 (7.2)

Theorem 2.3 allows us to say that f (T, y0)>0. Since we know from
Theorem 1.4 that f (T, } ) is continuous on R, Remark 2.5 allows us to
deduce that for all y # R, f (T, y)>0. At last, since T>0 has been
arbitrarily fixed, this holds for any T >0, and the proof of Theorem 1.5 is
finished.
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